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Abstract. We present the calculation of multiphoton radiation effects in leptonic W -boson decays in the
framework of the Yennie–Frautschi–Suura exclusive exponentiation. This calculation is implemented in the
Monte Carlo event generator WINHAC for single W -boson production in hadronic collisions at the parton
level. Some numerical results obtained with the help of this program are also presented.

1 Introduction

Studying W -boson physics is an important way of testing
the standard model (SM) and searching for “new physics”.
This can be done in both electron–positron and hadron
colliders. In e+e− collisions, the main source of W bosons
is the process of W -pair production. This process was one
of the most important subjects of the LEP2 experiments
at CERN, run in the years 1996–2000; see e.g. [1,2]. It also
belongs to the main topics of a research program of future
linear colliders (LC); see e.g. [3]. In this process one can
measure precisely the W -boson mass and width as well
as non-abelian triple and quartic gauge-boson couplings1.
In hadron colliders (proton–proton or proton–antiproton),
the main source of W bosons is the process of single-W
production. The most precise measurements of the W -
boson mass and width in hadron colliders come from this
process; see e.g. [4]. It can also be used to extract par-
ton distribution functions (PDFs) and to measure parton
luminosities [5].

Among radiative corrections that affect the W -boson
observables considerably is the photon radiation in lep-
tonic W decays. It distorts the W -invariant-mass distri-
butions reconstructed from W -decay products in e+e−
experiments [6, 7] or W -transverse-mass distributions ob-
tained in hadron-collider experiments [8]. These distor-
tions are strongly acceptance dependent; see e.g. [7, 8].
This radiation also affects the lepton pseudorapidity dis-
tribution, which is the main tool for the PDFs and parton
luminosities measurements in the hadron colliders. There-
fore, precise theoretical predictions for the photon radia-
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1 Actually, for the quartic gauge-boson coupling an addi-
tional gauge boson, γ or Z, is required

tion in the leptonic W decays is of great importance for
both types of high-energy particle colliders. In order to be
fully applicable in a realistic experimental situation, such
predictions have to be provided in terms of a Monte Carlo
event generator (MCEG).

The O(α) electroweak (EW) radiative corrections in
the on-shell W decays were calculated analytically a long
time ago by several authors [9–12]. In the case of the
W -pair production in e+e− colliders, the calculations of
the O(α) EW corrections in a double-pole approximation
(DPA) were done in [13,14]. The latter were implemented
in the MCEG RacoonWW [14]. For single-W production
in hadronic collisions, the respective O(α) EW corrections
were calculated in [8,15–17]. The MCEG for this process,
including pure QED O(α) corrections, was provided long
ago by Berends and Kleiss [18]. The two-real-photon radi-
ation cross section in W decays was calculated in [19]. On
the other hand, the MC package PHOTOS [20] provides
a universal tool for the generation of photon radiation in
particle decays up to O(α2) in the leading-log (LL) ap-
proximation. This was used in the MCEG YFSWW [21]
for the simulation of radiative W decays for the W -pair
production process in e+e− collisions.

To date, however, none of the existing MCEG for W -
boson physics included multiphoton radiation in leptonic
W decays through exclusive QED exponentiation. There-
fore, the influence of higher-order radiative corrections on
the W -boson observables was difficult to assess2. In this
paper, we provide the first calculation of the multipho-
ton radiation in leptonic W decays in the framework of
the Yennie–Frautschi–Suura exclusive exponentiation [22].
This calculation is implemented in the MCEG for single-
W production in quark–antiquark collisions called WIN-
HAC [23]. It is a starting point for the full MC program for
Drell–Yan-like single-W production at the proton–anti-

2 The calculation of [19] requires two visible photons in a
detector
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Fig. 1. The Born-level Feynman diagram for single-W pro-
duction in fermion–antifermion collisions

proton (Tevatron) and proton–proton (LHC) colliders.
The presented calculation as well as the respective MC
algorithm can also be implemented in the MCEG for W -
pair production in the e+e− collisions, such as YFSWW.

This paper is organized as follows. In Sect. 2 we pro-
vide spin amplitudes for the Born-level process and for
the process with single-photon radiation in W decays. In
Sect. 3 we discuss the YFS exponentiation in leptonic W -
boson decays. Numerical results are presented in Sect. 4.
Section 5 summarizes the paper and gives some outlook.
Finally, the appendices contain supplementary formulae.

2 Spin amplitudes

In the calculation of matrix elements for the process of
single-W production in hadronic collisions, we use the
spin amplitude formalism of [24]. In this approach, spinors
are expressed in the Weyl basis, the vector-boson polar-
izations in the Cartesian basis, and the spin amplitudes
are evaluated numerically for arbitrary four-momenta and
masses of fermions and bosons. This evaluation amounts,
in practice, to multiplying 2 × 2 c-number matrices by 2-
dimensional c-number vectors. We give below the general
spin amplitudes for arbitrary fermions in the initial and in
the final states, and apply them later on to the single-W
production in qq̄ collisions with leptonic W decays.

2.1 Born level

The Born-level Feynman diagram for single-W production
in fermion–antifermion collisions

f1(p1, σ1) + f̄2(p2, σ2) −→ W±(Q, λ) (1)

is depicted in Fig. 1, where (pi, σi) denotes the four-mo-
mentum and helicity (σi = ±1) of the corresponding
fermion, while (Q, λ) is the four-momentum and polar-
ization of the W -boson (λ = 1, 2, 3). The fermions f1 and
f2 are members of SU(2)L doublets with opposite values
of the weak-isospin third component and the pair f1f̄2 is
the SU(3)c singlet. The spin amplitudes for this process,
in the convention of [24], read

M(0)
P (σ1, σ2; λ) = − ieVf1f2√

2sW
ω−σ1(p1) ωσ2(p2) σ2

× S (p2, ε
∗
W (Q, λ), p1)−−σ2,σ1

, (2)

where e is the positron electric charge, Vf1f2 is the element
of the weak-mixing matrix (the CKM matrix for quarks,

W±

f1

f̄2

Fig. 2. The Born-level Feynman diagram for W -boson decay

the MNS matrix for leptons3 ), sW = sin θW, with θW the
weak-mixing (Weinberg) angle;

ω±(p) =
√

p0 ± |�p| ; (3)

εW (Q, λ) is the W -boson polarization vector (∗ denotes
the c-number conjugation); and S(. . .) is the spinorial
string function, given explicitly in Appendix A. The above
spin amplitudes are identical for any color singlet of the
initial fermion pair f1f̄2.

The spin amplitudes for the Born-level W -boson decay,

W±(Q, λ) −→ f1(q1, τ1) + f̄2(q2, τ2), (4)

shown diagrammatically in Fig. 2, are given by

M(0)
D (λ; τ1, τ2) = − ieCVf1f2√

2sW
ω−τ1(q1) ωτ2(q2) τ2

× S (q1, εW (Q, λ), q2)−τ1,−τ2
, (5)

where τ1,2 denote the helicities of the final-state fermions,
and C is the color factor,

C =

{√
3 : for quarks,

1 : for leptons.
(6)

The above spin amplitudes can easily be translated
from the vector-boson Cartesian basis into the helicity ba-
sis, using the following transformations:

Mhel(λ = ±) =
1√
2

[ ∓M(λ = 1) − iM(λ = 2) ] ,

Mhel(λ = 0) = M(λ = 3). (7)

Then the Born-level matrix element for the single-W
production and decay is given by the coherent sum of
the above spin amplitudes over the W -boson polarizations
multiplied by the Breit–Wigner function corresponding to
the W propagator:

M(0)(σ1, σ2; τ1, τ2) =
1

Q2 − M2
W + iγW (Q2)

×
∑

λ

M(0)
P (σ1, σ2; λ) M(0)

D (λ; τ1, τ2), (8)

where
3 In the following we neglect the masses of neutrinos and

therefore do not consider mixing in the lepton sector
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γW (Q2)=

{
MW ΓW : in the fixed-width scheme,
Q2ΓW /MW : in the running-width scheme.

(9)

It is known that the fixed-width and running-width
schemes are connected by an appropriate rescaling of the
line-shape parameters, here MW and ΓW [25].

2.2 O(α) corrections

The cross section for Drell–Yan-like W production in
hadronic collisions is dominated by the resonant single-
W process. Therefore, it can be described to a good ac-
curacy with the help of the leading-pole approximation
(LPA) [15, 17]. The non-LPA contributions are impor-
tant only for specific high-W -invariant-mass observables
(e.g. in “new physics” searches). In this paper we con-
centrate on the resonant W production; the non-resonant
contributions will be included later on. The O(α) EW
radiative corrections to the resonant single-W produc-
tion and decay can be divided in a gauge-invariant way
into the initial-state corrections (ISR), initial–final inter-
ferences (non-factorizable corrections) and the final-state
corrections (FSR); see e.g. [15,17]. The leading ISR (mass-
singular) QED corrections can be absorbed in the par-
ton distribution functions, in a way similar to the leading
QCD corrections [8,17,26]. In general, the ISR corrections
have a rather minor effect on the single-W observables at
hadron colliders [8, 26]. The non-factorizable corrections
are negligible in resonant W -boson production [8,15]. On
the contrary, the FSR corrections affect various W observ-
ables considerably [8]. This paper is devoted to the FSR,
and the other corrections will be considered in the future.
More precisely, our aim here is to give a theoretical de-
scription of the QED part of the FSR corrections in the
framework of the YFS exclusive exponentiation.

It is known that in processes involving the W -bosons,
the electroweak corrections cannot be split in a gauge-
invariant way into the pure-QED and pure-weak ones.
However, one can extract some parts of photonic cor-
rections that are gauge independent; see e.g. [9, 15]. In
this paper we follow the approach of [9], where only the
infrared-singular and fermion-mass-logarithmic terms are
extracted from the virtual O(α) EW corrections and com-
bined with the real-photon contributions. They form the
so-called QED-like corrections. The rest of the virtual
photonic corrections can be combined with the genuine
weak-boson corrections to form the so-called weak-like cor-
rections. Another solution, based on the YFS separation
of the infrared (IR) QED terms, was presented in [15].
It differs from the previous one by subleading (non-log)
terms. It can also easily be implemented in our calcula-
tions. In this approach, however, the weak-like corrections
are slightly larger numerically. Of course, when the whole
O(α) EW corrections are included these two approaches
are equivalent. Since in this paper we deal with QED-like
corrections only, we have chosen the solution of [9], which
is closer to the full O(α) calculation. This, however, may
change in the future when also the weak-like corrections
are included.

The major portion of the electroweak corrections can
be taken into account by using the so-called Gµ scheme,
i.e. parameterizing the cross section by the Fermi constant
Gµ instead of the fine-structure constant α; see e.g. [17,27].
In our case, this amounts to the replacement

α =
e2

4π
−→ αGµ =

√
2GµM2

W s2
W

π
(10)

in the hard-process parts of the matrix elements.

2.2.1 Virtual and real soft-photon corrections

The virtual QED-like correction to the leptonic W -boson
decay, extracted from [9], reads

δv
QED(M, ml) (11)

=
α

π

[
2
(

ln
M

ml
− 1
)

ln
mγ

M
+ ln2 M

ml
+

1
2

ln
M

ml

]
,

where M is the W -invariant mass (i.e. M2 = Q2), ml is the
charged-lepton mass and mγ a dummy photon mass (an
IR regulator). After combining the virtual correction with
the real-soft-photon contribution, one obtains the virtual
+ real-soft-photon correction (cf. e.g. [9, 10]):

δv+s
QED(M, ml) (12)

=
α

π

[
2
(

ln
M

ml
− 1
)

ln
2ks

M
+

3
2

ln
M

ml
− π2

6
+ 1
]

,

where ks is the soft-photon cut-off, i.e. the maximum en-
ergy of the soft real photon up to which its contribution
has been integrated over. When the above correction is
combined with the appropriate real-hard-photon contri-
bution integrated over the remaining photon phase space,
one obtains the total QED-like correction to the W -boson
width [9, 18]

δtot
QED =

α

π

(
77
24

− π2

3

)
� −1.89 × 10−4, (13)

which does not contain mass-logarithmic terms, in accor-
dance with the KLN-theorem [28, 29], and is small nu-
merically. The above formulae were obtained in the small-
lepton-mass approximation, ml � M , which means that
the terms O(m2

l /M
2) were neglected.

2.2.2 Real hard-photon radiation

Here we present the scattering amplitudes for single hard-
photon radiation in leptonic W -boson decays using the
spin amplitude formalism of [24] and the notation intro-
duced in the previous subsections. For the process

W±(Q, λ) −→ f1(q1, τ1) + f̄2(q2, τ2) + γ(k, κ), (14)
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Fig. 3. The Feynman diagrams for
W -boson decay including single real-
photon radiation (in the unitary gauge)

given by the Feynman diagrams in Fig. 3, we obtain the
O(α) spin amplitudes

M(1)
D (λ; τ1, τ2, κ)

= − ie2CVf1f2√
2sW

ω−τ1(q1) ωτ2(q2) τ2

×
{(

Qf1 q1 · ε∗γ
k · q1

− Qf2 q2 · ε∗γ
k · q2

− QW Q · ε∗γ
k · Q

)
×S (q1, εW (Q, λ), q2)−τ1,−τ2

+
Qf1

2 k · q1
S
(
q1, ε

∗
γ(k, κ), k, εW (Q, λ), q2

)−
τ1,−τ2

− Qf2

2 k · q2
S
(
q1, εW (Q, λ), k, ε∗γ(k, κ), q2

)−
τ1,−τ2

− QW k · εW

2 k · Q
S
(
q1, ε

∗
γ(k, κ), q2

)−
τ1,−τ2

+
QW εW · ε∗γ

2 k · Q
S (q1, k, q2)−τ1,−τ2

}
, (15)

where εγ(k, κ) is the κth polarization vector of the pho-
ton with four-momentum k (because the photon is mass-
less, κ = 1, 2); Qf1 , Qf2 and QW are the electric charges
(in units of the positron charge) of the fermions f1, f2
and the W -boson, respectively; they satisfy the condition:
QW = Qf1 −Qf2 . The spinorial functions S(. . .) are given
explicitly in Appendix A. The QED gauge invariance for
these amplitudes means that

M(1)
D (εγ → k) = 0. (16)

We have checked numerically that after the replacement
εγ → k in (15), the values of the spin amplitudes are
consistent with zero within the double-precision accuracy.

Then, the matrix element for single-W production and
radiative W decay can be obtained through

M(1)(σ1, σ2; τ1, τ2, κ) =
1

Q2 − M2
W + iγW (Q2)

×
∑

λ

M(0)
P (σ1, σ2; λ) M(1)

D (λ; τ1, τ2, κ), (17)

where the lowest-level spin amplitude M(0)
P for the single-

W production is given in (2). This matrix element is a
coherent convolution of non-radiative spin amplitudes for
W production and radiative spin amplitudes for W decay.
This means that it describes the photon radiation in the
W -decay stage only.

As was noticed in [18], the matrix element for the
single-photon radiation in the Drell–Yan-like W produc-
tion process can be, in the fixed-width scheme, split gauge-
invariantly into the sum of matrix elements for radiative
W production convoluted with non-radiative W decay and
non-radiative W production convoluted with radiative W
decay. This can be achieved by exploiting the partial frac-
tion decomposition of a product of W -boson propagators
arising when the photon is emitted from an intermediate
W -boson line [18]. This simple decomposition, however,
does not work in the running-width scheme. In this case
we have

1
Q2 − M2

W + iγW (Q2)
1

Q′2 − M2
W + iγW (Q′2)

=


 1

2kQ′
1

Q′2 − M2
W + iγW (Q′2)︸ ︷︷ ︸

← production

(18)

− 1
Q2 − M2

W + iγW (Q2)
1

2kQ︸ ︷︷ ︸
decay→


 1

1 + iΓW /MW
,

where Q and Q′ are the W -boson four-momenta before
and after the emission of the photon with four-momentum
k: Q′ = Q−k. The two terms in the square brackets corre-
spond to the radiative production and the radiative decay,
respectively, but they are multiplied by the factor (1 +
iΓW /MW )−1. So in the case of the running-width scheme,
the partial fraction decomposition of the W -propagator
works modulo this multiplicative factor. However, includ-
ing the running W -boson width in the case of the photon
radiation off the W -line leads to a violation of the QED
Ward identity, see e.g. [30, 31]. As was shown in [30], in
order to restore the respective Ward identity it is suffi-
cient to include the light-fermion-loop corrections to the
WWγ vertex. In the small-fermion-mass approximation
this amounts to multiplying the respective radiative am-
plitude by the factor

GFLS = 1 + i
ΓW

MW
. (19)

When we multiply our (18) by GFLS, the factor outside
the square brackets on the r.h.s. drops out, and we obtain
the decomposition of the corresponding amplitude into the
radiative production and the radiative decay – exactly as
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Fig. 4. Production of a single W − in quark–antiquark colli-
sions with multiphoton radiation in W -boson decay

in the fixed-width scheme. Therefore, our matrix element
of (17) for single-W production with radiative decays is
valid also in the running-width scheme. Let us finally re-
mark that although the compensating factor GFLS was de-
rived for the pure light-fermion-loop contribution to the
W -boson width, the respective Ward identity is satisfied
for any numerical value of ΓW . So, in particular, one may
use the radiatively corrected value of the W -width.

It should also be noted that in order to preserve a
gauge-independent definition of the W -boson mass and
width beyond the leading order, one should use, in both
the fixed- and running-width schemes, the pole rather than
on-shell W mass and width, see e.g. [32, 33].

3 The YFS exponentiation
in leptonic W decays
As was mentioned in the Introduction, the main purpose
of this work is to provide a theoretical prediction for the
multiphoton radiation in leptonic W -boson decays within
the YFS exclusive exponentiation scheme. In this paper we
consider the process of single-W production in hadronic
collisions at the parton level, i.e.

q1(p1) + q̄2(p2) −→ W±(Q)
−→ l(ql) + ν(qν) + γ(k1) + . . . + γ(kn),

(n = 0, 1, . . .), (20)

depicted diagrammatically in Fig. 4. Here we do not rely
on the small-lepton-mass approximation, i.e. the formulae
below are given for arbitrary final-state lepton masses.

The O(α) QED YFS-exponentiated total cross section
for this process reads

σtot
YFS =

∞∑
n=0

∫
d3ql

q0
l

d3qν

q0
ν

ρ(1)
n (p1, p2, q1, q2, k1, . . . , kn),

(21)
where

ρ(1)
n = eY (Q,ql;ks) 1

n!

n∏
i=1

d3ki

k0
i

S̃(Q, ql, ki)θ(k0
i − ks)

× δ(4)

(
p1 + p2 − ql − qν −

n∑
i=1

ki

)
(22)

×
[

β̄
(1)
0 (p1, p2, ql, qν) +

n∑
i=1

β̄
(1)
1 (p1, p2, ql, qν , ki)

S̃(Q, ql, ki)

]
;

here,

S̃(Q, ql, k) = − α

4π2

(
Q

kQ
− ql

kql

)2

(23)

is the soft-photon radiation (eikonal) factor and

Y (Q, ql; ks) = 2α
[
�B(Q, ql; mγ) + B̃(Q, ql; mγ , ks)

]
(24)

the YFS form factor, where B and B̃ are the virtual-
and real-photon IR YFS functions, given explicitly in Ap-
pendix B for arbitrary four-momenta and masses of
charged particles. These IR functions are regularized with
the dummy photon mass mγ , which cancels out in their
sum. The real-photon function B̃ depends also on the soft-
photon energy cut-off ks � ECM, which means that it
was integrated analytically over the photons with energies
Eγ ≤ ks. The photons with energies Eγ > ks are generated
exclusively with the help of Monte Carlo techniques. The
soft cut-off ks is a dummy parameter, i.e. the resulting
cross section does not depend on it, which can be checked
both analytically (e.g. by differentiating (22) over ks) and
numerically (by evaluating the cross section for different
values of ks). One of the advantages of exponentiation is
that ks can be put arbitrarily low without causing any
part of the cross section to become negative – in contrast
to fixed-order calculations. In (22), β̄

(1)
0 and β̄

(1)
1 are the

YFS non-IR functions, calculated perturbatively through
O(α). We present them below in the center-of-mass (CM)
frame of the incoming quarks, i.e. the rest frame of W ,
with the +z axis pointing in the quark q1 direction.

The function β̄
(1)
0 is given by

β̄
(1)
0 (p1, p2, ql, qν)

= β̄
(0)
0 (p1, p2, ql, qν)

[
1 + δ(1)(Q, ql, qν)

]
, (25)

where β̄
(0)
0 is related to the Born-level cross section

through

1
2
β̄

(0)
0 =

1√
λ(1, ml/M, mν/M)

dσ0

dΩl

=
1

16s (2π)2
1
12

∑∣∣∣M(0)
∣∣∣2 , (26)

with s = (q1 + q2)2 = Q2 and λ(x, y, z) = x2 + y2 +
z2 −2xy −2xz −2yz. The factor 1

12 = 1
4 · 1

3 corresponds to
averaging over the initial-state quark spins and colors (the
color contents has been extracted explicitly), and the sum∑

runs over all the initial- and final-state spin indices. In
(25), the correction

δ(1)(Q, ql, qν) = δv
EW(Q, ql, qν ; mγ)

−2α�B(Q, ql; mγ) (27)

is the 1st-order non-IR correction to the β̄0 function, where
δv
EW is the O(α) EW virtual correction. Since in this pa-

per we limit ourselves to the QED-like corrections, from
(11) and (59) we have

δ
(1)
QED(Q, ql) =

α

π

(
ln

M

ml
+

1
2

)
. (28)
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Although (11) and (59) were obtained in the small-lepton-
mass approximation, ml � M , we have checked that the
above formula remains true for arbitrary lepton mass ml <
M (of course, under the assumption that δv

QED contains
only the IR- and mass-singular terms).

The function β̄
(1)
1 is the YFS non-IR function corre-

sponding to the single-real-hard photon radiation. It is
related to differential cross sections through

1
2
β̄

(1)
1 (p1, p2, ql, qν , k) (29)

=
1√
Λ(k)

dσ1

dΩlk0dk0dΩk
− S̃(Q, ql, k)

1√
λ

dσ0

dΩl
,

where

dσ1

dΩlk0dk0dΩk
=

√
Λ(k)

32s (2π)5
1
12

∑∣∣∣M(1)
∣∣∣2 , (30)

with √
Λ(k) =

2 |�ql|2
|�ql|(M − k0) + q0

l |�k| cos θlk

(31)

the phase-space factor (coming from the phase-space in-
tegration eliminating the energy-momentum conservation
δ(4) function for single-photon radiation), where θlk =
∠(�ql,�k); in the soft-photon limit Λ(k → 0) → λ. The
sum

∑
in (30) again runs over the initial- and final-state

spin indices, this time inluding also those of the radiative
photon. Thus, we finally have

β̄
(1)
1 (p1, p2, ql, qν , k)

=
1

16s (2π)5
1
12

∑∣∣∣M(1)
∣∣∣2

− S̃(Q, ql, k)β̄(0)
0 (p1, p2, ql, qν). (32)

There are several advantages in using the matrix ele-
ments of Sect. 2. Firstly, the respective spin amplitudes are
derived without the assumption of the energy-momentum
conservation. Therefore, they can be used directly in eval-
uations of the above YFS β̄ functions over the multipho-
ton phase space, without the need to resort to any “re-
duction procedure”, which reduces the multiphoton phase
space to the 0-photon phase space for β̄0 and the 1-photon
phase space for β̄1; see e.g. [22, 34]. Secondly, since the
spin amplitudes are obtained for massive fermions, there
is no need to use any phase-space slicing or subtraction
methods in order to separate mass singularities [17]. Us-
ing spin amplitudes instead of explicit analytical formu-
lae for the squared matrix elements may also be useful
for some dedicated studies, such as investigation of vari-
ous W -polarization contributions, “new physics” searches
(spin amplitudes can easily be modified to include some
“new physics” components), etc. And, which is important
in practice, the numerical evaluation of the matrix ele-
ments based on the above spin amplitudes is fast in terms
of CPU time.

In computing the matrix element
∑∣∣M(1)

∣∣2 we ob-
served a loss of numerical precision ∼ O(0.1%) when the

angle between the radiative photon and the electron
(positron), θeγ , was ∼ O(10−6). It turned out that most of
this precision loss was coming from huge numerical cancel-
lations between the terms in the universal eikonal factor
of (15) (the factor in front of the first S function). We
improved this by correcting the above matrix element ac-
cording to

∑∣∣∣M(1)
∣∣∣2 −→

∑∣∣∣M(1)
∣∣∣2 + δcoll, (33)

where

δcoll =

[
16π3S̃(Q, ql, k) − e2

∑
κ

∣∣∣∣ql · ε∗γ(κ)
k · ql

− Q · ε∗γ(κ)
k · Q

∣∣∣∣2
]∑∣∣∣M(0)

∣∣∣2 . (34)

Algebraically, the two terms in the square brackets are
identical. Numerically, however, they can differ for ultra-
collinear photon radiation, owing to huge cancellations in
the second term leading to a loss of numerical precision.
Therefore, this correction effectively replaces the numeri-
cally unstable part of the matrix element

∑∣∣M(1)
∣∣2 corre-

sponding to the second term in (34) with the numerically
safe one corresponding to the first term, obtained directly
from the particles four-momenta. We have checked that
the above modification is sufficient for the numerical pre-
cision of O(10−4) for θeγ

<∼ 10−6 and of O(10−8) for the
total cross section. By looking at (32) one can notice that
the part of the matrix element

∑∣∣M(1)
∣∣2 that is pro-

portional to the soft-photon factor S̃ exactly cancels in
the calculation of the β̄

(1)
1 function. We could, therefore,

perform this cancellation algebraically and thus avoid the
above numerical problems. We, however, keep this term in∑∣∣M(1)

∣∣2 because apart from the YFS exponentiation we
want to have in our program also the non-exponentiated,
fixed-order O(α) calculation. Since it is now calculated in
the same way as the second term in (32), it exactly cancels
numerically in the evaluation of the β̄

(1)
1 function.

This completes our description of the cross section for
the process (20) with the O(α) QED YFS exponentiation.
In order to compute this cross section and generate events,
we have developed an appropriate MC algorithm, which
will be described in detail elsewhere [23]. We will complete
this paper by presenting some results of numerical tests
of the corresponding MC program, called WINHAC.

4 Numerical results

We performed several numerical tests of the MC event
generator WINHAC, which implements the calculations
presented above. Here we discuss some of the results. We
considered the following process:

d + ū −→ W− −→ l + ν̄l, (35)
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where l = e, µ, τ . We have checked that the results remain
unchanged when we switch to the corresponding process
of W+ production and decay. Our MC calculations were
done using the Gµ scheme and the fixed-width scheme.
All the results below, unless stated otherwise, have been
obtained for the following input parameters:

md = 3 × 10−3 GeV, mu = 6 × 10−3,

Vud = 1, mνl
= 0,

me = 0.511 × 10−3 GeV, mµ = 0.10565836 GeV,

mτ = 1.77703 GeV,

MW = 80.423 GeV, MZ = 91.1882 GeV

s2
W = 1 − M2

W

M2
Z

, ΓW =
3GµM3

W

2
√

2π

(
1 +

2αs

3π

)
,

α = 137.03599976, Gµ = 1.16639 × 10−5 GeV−2,

αs = 0.1185, ECM =
√

s = MW . (36)

4.1 General tests

We have performed several numerical tests of the MC
event generator WINHAC aimed at checking the correct-
ness of the implemented matrix elements as well as the
corresponding MC algorithm.

In order to cross-check the matrix elements presented
here, we implemented in our MC program the matrix el-
ements of [18], which in the following we shall call B&K.
These latter matrix elements were obtained in the small-
lepton-mass approximation, ml � MW ; their precision
therefore is of O(m2

l /M
2
W ), which for electrons gives

O(10−10). Since our spin amplitudes are obtained for mas-
sive fermions, we performed the comparisons of these ma-
trix elements for electronic W -boson decays. We did this
by taking the difference between the corresponding MC
weights on an event-by-event basis and calculating the
average of this difference over the whole MC sample. For
both the Born-level and O(α) matrix elements, we reached
an agreement at the level of ∼ 10−8.

Then, we performed several tests to check the MC algo-
rithm of the program WINHAC. An important test of the
algorithm for MC integration and event generation accord-
ing to (21) is to reproduce fixed-order calculations. The
strict Born-level cross section can be obtained from (21)
by truncating the perturbation series in α at the lowest-
order term, which amounts to

σtot
0 =

∫
d3ql

q0
l

d3qν

q0
ν

ρ
(0)
0 e−Y . (37)

Within the multiphoton MC algorithm, this means calcu-
lating an appropriate weight if the photon number n =
0 and setting it to zero if n > 0. The Born-level total
cross section can be easily calculated analytically. In the
small-fermion-mass approximation and in the fixed-width
scheme it reads

σtot
0 =

α2
Gµ

π|Vq1q2 |2
36s4

W

s

(s − M2
W )2 + M2

W Γ 2
W

. (38)

Table 1. The results for the total Born-level cross section
from the MC program WINHAC compared with the analyti-
cal calculation in the small-fermion-mass approximation. The
numbers in parentheses are statistical errors for the last digits

Calculation
σtot

0 [nb]
e µ τ

Analytical 8.8872 8.8872 8.8872
WINHAC 8.8869 (2) 8.8873 (2) 8.8808 (2)

Table 2. The results for the O(α) QED-like correction to the
total cross section from the MC program WINHAC. The num-
bers in parentheses are statistical errors for the last digits

Calculation
δ1 = σtot

1 /σtot
0 − 1

e µ τ

WINHAC −1.5 (3) × 10−4 −2.2 (3) × 10−4 −0.3 (2) × 10−4

In Table 1 we compare the results for the total Born cross
section for e, µ and τ in the final state, calculated with
the MC program WINHAC with those obtained from the
analytical formula of (38). We see a very good agreement
between these two calculations for e and µ. For τ they
differ by ∼ 0.1%, which can be explained by the τ -mass
effects (they are not negligible as in the case of e and µ).

In a similar way, the first-order cross section can be
obtained from (21) by truncating the perturbative series
at O(α) beyond the Born level, i.e.

σtot
1 =

∫
d3ql

q0
l

d3qν

q0
ν

× δ(4)(p1 + p2 − ql − qν) β̄
(0)
0

[
1 + δ

(1)
QED + Y

]
+
∫

d3ql

q0
l

d3qν

q0
ν

d3k

k0

× δ(4)(p1 + p2 − ql − qν − k)
[
β̄

(1)
1 + S̃β̄

(0)
0

]
× θ(k0 − ks) , (39)

where the first term on the r.h.s. corresponds to the Born
plus virtual and real-soft-photon contribution, and the
second term to the real-hard-photon contribution. In prac-
tice, this means that the first term is evaluated within the
multiphoton algorithm only for n = 0, the second only
for n = 1; otherwise the appropriate MC weights are set
to zero. In Table 2 we show the results from the program
WINHAC for the pure O(α) QED-like correction to the
total cross section. As can be seen, the results for e and
µ are in good agreement with the numerical value of to-
tal QED-like correction to the W -boson width as given
in (13). For τ we observe the difference of ∼ 1.5 × 10−4,
which again can be explained by the τ -mass effects.

In Table 3 we compare the results for the O(α) hard-
photon correction as a function of the lower photon energy
cut-off k0, i.e.
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Table 3. The fraction of events (in%) with a photon energy
greater than k0 at O(α) from the MC program WINHAC and
from the MC program of Berends and Kleiss [18] (denoted as
B&K) for ECM = 90 GeV. The numbers in parentheses are
statistical errors for the last digits

k0
e µ

WINHAC B&K WINHAC B&K

0.01 19.69 (3) 19.7 10.11 (2) 10.1
0.05 11.61 (2) 11.6 5.92 (1) 5.9
0.10 8.31 (2) 8.3 4.22 (1) 4.2
0.15 6.47 (2) 6.5 3.27 (1) 3.3
0.20 5.23 (1) 5.2 2.63 (1) 2.6
0.30 3.61 (1) 3.6 1.80 (1) 1.8
0.40 2.57 (1) 2.6 1.27 (1) 1.3
0.50 1.84 (1) 1.8 0.91 (1) 0.9
0.60 1.29 (1) 1.3 0.63 (1) 0.6
0.70 0.86 (1) 0.9 0.42 (1) 0.4
0.80 0.52 (1) 0.5 0.25 (1) 0.2
0.90 0.24 (1) 0.2 0.11 (1) 0.1

δh
1 (k0) =

1
σtot

1

∫
k0

dEγ
dσ1

Eγ
× 100% , (40)

for the center-of-mass energy ECM = 90 GeV, obtained
from the program WINHAC and from the B&K MC pro-
gram [18]. The results of these two programs agree very
well within the statistical errors.

As the above fixed-order results from WINHAC have
been obtained in the framework of the YFS-type multi-
photon algorithm, they make us strongly confident in the
correctness of the corresponding MC algorithm.

In Table 4 we give the results for the total cross section
at the fixed O(α)-level and including the YFS exponen-
tiation as given in (21). The YFS-exponentiation correc-
tions beyond O(α) are ∼ 10−4, i.e. of the expected size of
higher-order corrections.

4.2 Distributions

Here we presents the results from WINHAC for some dis-
tributions at the Born level, with O(α) QED-like correc-
tions and including the YFS exponentiation. These results
are given for two kinds of event selection: BARE, where
the corresponding observables are obtained from bare-
lepton four-momenta and no cuts are applied, and CALO,
where the photon four-momenta are combined with the
charged-lepton four-momenta if the opening angle
between their directions ∠(�ql,�k) ≤ 5◦; such photons are
discarded. No extra cuts are applied. The BARE accep-
tance is closer to experimental event selections for muons,
while the CALO is closer to the ones for electrons. We,
however, use them for both types of final states.

In Fig. 5 we present the distributions of the electron
and muon energy for the fixed O(α) corrections and for

the YFS exponentiation. The upper plots show the abso-
lute distributions for the BARE and CALO acceptances,
respectively, while the lower plots show the relative differ-
ences between these two calculations, also for the BARE
and CALO acceptances. At the Born level, the charged-
lepton energy is fixed at El ≈ 1

2

√
s; therefore, the energy

tails for El < 1
2

√
s in the above plots are the result of

the real-photon radiation in W -boson decay. The YFS-
exponentiation corrections beyond the fixed O(α)-level are
large for the BARE acceptance: up to ∼ 15% for electrons
and up to ∼ 8% for muons – they differ for these two de-
cay channels. For the CALO acceptance these corrections
are smaller, up to ∼ 4%, and they are almost identical
for electrons and muons. This is because in this case the
large corrections due to lepton-mass-log terms have been
excluded by the photon–lepton recombination. As can be
seen, the largest (negative) corrections are in the first ra-
diative bin (i.e. the second highest one in the upper plots)
and they change sign for low lepton energies.

In Fig. 6 we show the distributions of the hardest pho-
ton energy for the electron and muon W -decay channels.
The notation is similar to that in Fig. 5. Again, for the
BARE acceptance the YFS-exponentiation corrections be-
yond the fixed O(α)-level are large and they are different
for these two channels: up to ∼ 15% for electrons and up to
∼ 7% for muons. For CALO they are smaller, ∼ 4%, and
similar in the two channels. The corrections are largest for
soft photons and decrease with the photon energy.

Finally, in Fig. 7 we show the distributions of the co-
sine of the hardest photon polar angle with respect to
the incoming quark direction; the notation is as in Fig. 6.
For the BARE acceptance the YFS-exponentiation cor-
rections beyond the fixed O(α)-level are large and almost
constant: ∼ 28% for electrons and ∼ 14% for muons. For
CALO they are smaller, 6–7%, and similar in the electron
and muon channels.

As can be seen from Figs. 5–7, the YFS exponentiation
affects sizably the radiative events. All the above distri-
butions have been obtained for the parton-level W -boson
production at fixed CMS energy. In the actual proton–
(anti)proton collisions the parton–parton CMS energy can
change, which leads to an enhancement of the FSR correc-
tions, in particular those due to the YFS exponentiation.
This will be investigated elsewhere [35].

5 Summary and outlook

In this paper we have presented the calculations of the
YFS QED exponentiation in leptonic W -boson decays.
We have provided the fully massive spin amplitudes for
the single W -boson production and decay, including the
single-real-photon radiation in W decays. We have ob-
tained the numerically stable representations of the YFS
form factor for the charged-particle decay. All this has
been applied to the process of Drell–Yan-like W -boson
production in hadronic collisions and has been implemen-
ted, at the parton level, in the Monte Carlo event genera-
tor WINHAC 1.0. For this purpose, an efficient multipho-
ton MC algorithm has been developed. The above spin
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Table 4. The results for the fixed-O(α) and the YFS-exponentiated total cross
section from the MC program WINHAC. The numbers in parentheses are statis-
tical errors for the last digits

Calculation
σtot [nb]

e µ τ

Fixed O(α)-level 8.88564 (14) 8.88539 (12) 8.88047 (10)
YFS exponentiation 8.88390 (6) 8.88443 (9) 8.87859 (9)

δexp = (σtot
YFS − σtot

1 )/σtot
0 −2.0 (1) × 10−4 −1.1 (1) × 10−4 −2.1 (0) × 10−4

BARE CALO
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Fig. 5a–d. Distributions of the charged-lepton energy for BARE and CALO acceptances
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Fig. 6a–d. Distributions of the hardest photon energy for BARE and CALO acceptances

amplitudes have been cross-checked with the independent
analytical representations of the appropriate matrix ele-
ments [18] and they have been found to be in very good
numerical agreement. We have also performed several nu-
merical tests of the implemented MC algorithm. The re-
sults of these tests make us confident in the correctness of
this MC algorithm.

Numerically, the YFS-exponentiation corrections be-
yond the fixed O(α) calculations are at the level of ∼ 10−4

for the total cross section, which is the result of the KLN-
theorem. However, for some distributions they can amount

to between a few and over 20 per cent. These corrections
can be significantly reduced when a calorimetric-like re-
combination of radiative photons and charged leptons is
applied. Such a treatment is experimentally natural for
the electrons in the final state, but less obvious for the
muons.

Here we presented the calculations for the QED-like
corrections in the leptonic W -boson decays and for the
parton-level W -production process only. We are planning
to extend this, in the future, to the full proton–(anti)pro-
ton collisions and to include other O(α) electroweak cor-
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Fig. 7a–d. Distributions of the cosine of the hardest photon polar angle for BARE and CALO acceptances

rections. The next step would be the inclusion of the NLO
QCD effects as well as soft-gluon resummation correc-
tions. We are also going to perform further tests of the
program WINHAC at the O(α) and beyond, particularly
comparisons with independent calculations for various ob-
servables. Last, but not least, the full documentation of
the MC program WINHAC [23] is in preparation [37].
There, the details of the corresponding MC algorithm will
be given.

In this paper, we applied the QED YFS exponentiation
in leptonic W -boson decays to the single-W production
process at hadron colliders. However, it can also be used
to describe the photon radiation in W decays in the pro-
cesses of W -pair production at both hadron and electron–
positron colliders. In particular, it can be rather easily
implemented in our MC event generator YFSWW [21] for
W+W− production in e+e− collisions, which will be nec-
essary for the future linear colliders [3].
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A Spinorial string functions

Here we provide explicit formulae for the spinorial string
functions introduced in Sect. 2. The general such function
in the two-component Weyl-spinor basis reads [24]

S(pi, a1, . . . , an, pj)α
σiσj

= χ†σi
(pi) [a1, . . . , an]α

×χσj
(pj), (41)

where

χ+(p) =
1√

2|�p|(|�p| + p3)

[ |�p| + p3

p1 + ip2

]
,

χ−(p) =
1√

2|�p|(|�p| + p3)

[−p1 + ip2

|�p| + p3

]
(42)

are the two-component Pauli spinors corresponding to an
external fermion with four-momentum p = (p0, �p) =
(p0, p1, p2, p3); for p3 = −|�p| we choose

χ+(p) =
[
0
1

]
,

χ−(p) =
[−1

0

]
. (43)

The internal part of the above string function

[a1, . . . , an]α = (/a1)α(/a2)−α . . . (/an)(−1)n+1α (44)

is the product of 2×2 c-number matrices, where

(/a)± =

[
a0 ∓ a3 ∓(a1 − ia2)

∓(a1 − ia2) a0 ± a3

]
(45)

with a = (a0, a1, a2, a3) the four-vector in Minkowski
space.

As can be seen, the spinorial function S can be easily
evaluated numerically for arbitrary n. One can just com-
pute a product of internal 2 × 2 matrices (/ai)α, and then
multiply the resulting matrix by the external 2-dimensio-
nal c-number vectors χ. However, the numerical evalua-
tion is more efficient if, instead of matrix-by-matrix mul-
tiplication, one performs matrix-by-vector multiplication.
In our computation of the function S, we start from mul-
tiplying the left-hand-side vector χ† by the matrix (/a1)α,
and continue by multiplying the resulting vectors by the
consecutive matrices (/ai)α until we reach the last matrix,
(/an)α. The computation is completed by performing the
scalar product of the final vector of the above multiplica-
tion with the right-hand-side vector χ.

Three polarization vectors of a massive vector-boson
with four-momentum k = (k0,�k) = (k0, k1, k2, k3) and

the mass m are, in the Cartesian basis, given by

εµ(k, λ = 1) =
1

|�k|kT

(
0, k1k3, k2k3,−k2

T
)
,

εµ(k, λ = 2) =
1
kT

(
0,−k2, k1, 0

)
,

εµ(k, λ = 3) =
k0

m|�k|

(
|�k|2
k0 , k1, k2, k3

)
, (46)

where kT =
√

(k1)2 + (k2)2 is the transverse momentum.
For massless vector bosons, such as photons, εµ(λ = 3) =
0, i.e. there are only two non-zero polarizations εµ(λ = 1)
and εµ(λ = 2). Helicity eigenstates can be obtained from
the above polarization vectors through

εhel(k, λ = ±) =
1√
2

[ ∓ε(k, λ = 1) − iε(k, λ = 2) ] ,

εhel(k, λ = 0) = ε(k, λ = 3). (47)

B The YFS IR functions

In [36] we provided the general formulae for the YFS
IR functions �B and B̃ for a pair of charged particles
of arbitrary masses and four-momenta. This representa-
tion works very well for particle production or scattering
processes; however, it becomes numerically unstable for
charged-particle decays. Therefore, for the process

W±(Q) −→ l±(q) +
(−)
νl (q′), (48)

we have to obtain different representations for these func-
tions. A specific feature of the above process is that a
QED-radiation dipole is stretched between a decaying par-
ticle (W ) and a decay product (l). For such a dipole, the
four-momentum transfer between its constituents is non-
negative,

t = (Q − q)2 ≥ 0, (49)

in contrast to scattering processes. In such a case, the cor-
responding IR integrals have to be calculated in a slightly
different way than was done in [36] for t < 0. Special care
is also needed for the limiting case t = 0, which occurs for
the two-body W -boson leptonic decay when the neutrino
mass is neglected. For the sake of numerical stability, it
has to be treated separately.

The YFS virtual- and real-photon IR functions for a
pair of charged particles with the four-momenta (Q, q) are
defined as follows [22]:

B(Q, q; mγ)

=
i

8π3

∫
d4k

k2 − m2
γ + iε

×
(

2q − k

k2 − 2kq + iε
− 2Q − k

k2 − 2kQ + iε

)2

, (50)

B̃(Q, q; mγ , ks)

= − 1
8π2

∫
k0<ks

d3k

k0

(
q

kq
− Q

kQ

)2

, (51)
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where mγ is a dummy photon mass used to regularize the
IR-divergent integrals (mγ � ks), while ks is the soft-
photon cut-off, up to which the integration over the real-
photon four-momenta is carried over analytically (ks �
Q0). The explicit analytical formulae for these functions
are presented below.

B.1 The virtual-photon IR function

The virtual-photon IR function reads as follows:
[I.] t = (Q − q)2 > 0:

2α�B(Q, q; mγ)

=
α

π

{
[ νA(Q, q) − 1 ] ln

m2
γ

Mm
+

1
2
A1(Q, q)

− νA3(Q, q)} , (52)

with

A(Q, q) =
1
λ

ln
λ + ν

Mm
, (53)

A1(Q, q) =
M2 − m2

t
ln

M

m
− 2λ2

t
A(Q, q) − 2, (54)

A3(Q, q) = A(Q, q) ln
2λ

Mm

+
1
λ

[
1
4

(
ln

λ + ν

M2 + 2 ln
λ − ν + M2

t

)
ln

λ + ν

M2

+
1
4

(
ln

λ + ν

m2 − 2 ln
λ + ν − m2

m2

)
ln

λ + ν

m2

+
1
2

ln η ln(1 + η) (55)

− 1
2

ln ζ ln(1 + ζ) + �Li2(−η) − �Li2(−ζ)
]

,

where

ν = Qq, λ =
√

(ν − Mm)(ν + Mm),
Q2 = M2, q2 = m2, M > m ,

t = M2 + m2 − 2ν, Mm ≤ ν <
1
2
(
M2 + m2) ,

η =
m2t

2λ(2λ + ν − m2)
, ζ =

λ + ν

m2 η , (56)

and

Li2(y) = −
∫ y

0

dx

x
ln(1 − x), | arg(1 − y)| < π, (57)

is the Spence dilogarithm function.
[II.] t = (Q − q)2 = 0:

2α�B(Q, q; mγ) (58)

=
α

π

{(
M2 + m2

M2 − m2 ln
M

m
− 1
)(

ln
m2

γ

Mm
+

1
2

)}
.

In the limit m � M we get

2α�B(Q, q; mγ) =
m�M

(59)

α

π

{
2
(

ln
M

m
− 1
)

ln
mγ

M
+ ln2 M

m
− 1

2
ln

M

m
− 1

2

}
.

B.2 The real-photon IR function

For the real-photon IR function we obtain
[I.] t = (Q − q)2 > 0:

B̃(Q, q; mγ , ks)

=
α

π

{
[ νA(Q, q) − 1 ] ln

4k2
s

m2
γ

− M2

2
A4(Q, Q)

− m2

2
A4(q, q) − νA4(Q, q)

}
, (60)

with

A4(p, p) =
1

p2β
ln

1 − β

1 + β
, β =

|�p|
p0 , (61)

A4(Q, q) =
1
κ

{
ln
∣∣∣∣V 2

t

∣∣∣∣ (62)

×
1∑

i=0

(−1)n+1 [ X(zi; y1, y4, y2, y3) + R(zi) ]

}
,

where

R(z) = Y14(z) + Y21(z) + Y32(z) − Y34(z)

+
1
2
X(z; y1, y2, y3, y4)X(z; y2, y3, y1, y4) ,

Yij(z) = 2Zij(z) +
1
2

ln2
∣∣∣∣ z − yi

z − yj

∣∣∣∣ ,

Zij(z) = �Li2

(
yj − yi

z − yi

)
,

X(z; a, b, c, d) = ln
∣∣∣∣ (z − a)(z − b)
(z − c)(z − d)

∣∣∣∣ , (63)

and

z0 =
|�q|
T

, z1 =
| �Q|
T

− 1 ;

y1 = − 1
2T

[
T + Ω − ωδ + κ

t
V

]
, y2 = y1 − κV

tT
,

y3 = − 1
2T

[
T − Ω +

ωδ + κ

V

]
, y4 = y3 +

κ

TV
;

κ =
√

(ω2 − t)(δ2 − t) , δ = M − m,

ω = M + m , T =
√

∆2 − t , V = ∆ + T,

∆ = Q0 − q0, Ω = Q0 + q0 , (64)

while ν and A(Q, q) are as given in the previous subsec-
tion. We have checked that this analytical representation
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is numerically stable for t >∼ 10−10 GeV2, when computed
in any Lorentz frame, which is neither the W nor the l
rest frame. In these frames we need an explicit analytical
formula for A4(p, p) in the limit β → 0. It reads

A4(p, p) =
p=(m,�0)

− 2
m2 . (65)

In the W rest frame, i.e. for Q = (M,�0), the function
A4(Q, q) can be simplified to get

A4(Q, q)

=
1

2Mq̄

[
ln

M − E + q̄

M − E − q̄
ln

E + q̄

M

− 2 ln
2q̄(M − E + q̄)

Mm
ln

E + q̄

M

+ 2�Li2

(
E − q̄

M

)
− 2�Li2

(
E + q̄

M

)

+ �Li2

(
M − E − q̄

−2q̄

)

− �Li2

(
M − E + q̄

2q̄

)

+ �Li2

(
M(E + q̄) − m2

2Mq̄

)

− �Li2

(
M(E − q̄) − m2

−2Mq̄

)]
, (66)

where E = q0, q̄ = |�q|.
[II.] t = (Q − q)2 = 0: For t = 0 the functions A(Q, q),
A4(Q, Q), A4(q, q) can remain the same as for t > 0, but
we need a new, numerically stable, representation for the
function A4(Q, q). It can be cast in the form

A4(Q, q) =
1
µ2

[
ln

2∆2

µ2 ln
∣∣∣∣ξ2ξ3

ξ1

∣∣∣∣+ U(z1) − U(z0)
]

,

(67)
where

U(z) =
1
2

ln2
∣∣∣∣ (z − y1)(z − y2)

z − y3

∣∣∣∣
+ ln |z − y1| ln

|z − y1|
(z − y2)2

+ 2�Li2

(
y2 − y1

z − y1

)
+ 2�Li2

(
y3 − y2

z − y2

)
;

ξi =
z0 − yi

z1 − yi
, z0 =

|�q|
∆

, z1 =
| �Q|
∆

− 1 ;

y1 =
q0

∆
, y2 = y1 − µ2

2∆2 , y3 = −y1 +
2m2

µ2 ;

∆ = Q0 − q0 , µ2 = M2 − m2 . (68)

In the W rest frame we get

A4(Q, q) =
Q=(M,�0)

− 2
M2 − m2

[
ln2 M

m
+ Li2

(
M2 − m2

M2

)]
. (69)

Then, in the small-lepton-mass limit, m � M , we obtain a
simple expression for the function B̃ in the W rest frame:

2αB̃(Q, q; mγ , ks) =
m�M

(70)

α

π

{
2
(

ln
M

m
− 1
)

ln
2ks

mγ
− ln2 M

m
+ ln

M

m
+ 1 − π2

6

}
.

After combining this with the virtual-photon function of
(59), we obtain a simple expression for the YFS form fac-
tor in the W rest frame:

Y (Q, q; ks) =
m�M

(71)

α

π

{
2
(

ln
M

m
− 1
)

ln
2ks

M
+

1
2

ln
M

m
− 1

2
− π2

6

}
.

As can be seen explicitly, it is free from the IR singularity
as well as from the Sudakov double-logarithms.
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Zwirner (CERN 96-01, Geneva 1996), 2 vols

2. Reports of the Working Groups on Precision Calculations
for LEP2 Physics, edited by S. Jadach, G. Passarino, R.
Pittau (CERN 2000-009, Geneva 2000)

3. ECFA/DESY LC Physics Working Group, J.A. Aguilar-
Saavedra et al., TESLA Technical Design Report
Part III: Physics at an e+e− Linear Collider, SLAC-
REPRINT-2001-002, DESY-01-011, DESY-2001-011,
DESY-01-011C, DESY-2001-011C, DESY-TESLA-2001-
23, DESY-TESLA-FEL-2001-05, ECFA-2001-209, March
2001, hep-ph/0106315

4. Proceedings of the Workshop on Standard Model Physics
(and More) at the LHC, edited by G. Altarelli, M.
Mangano (CERN 2000-004, Geneva 2000)

5. M. Dittmar, F. Pauss, D. Zurcher, Phys. Rev. D 56, 7284
(1997), hep-ex/9705004

6. W. Beenakker, F.A. Berends, A.P. Chapovsky, Phys. Lett.
B 435, 233 (1998), hep-ph/9805327

7. S. Jadach, W. P�laczek, M. Skrzypek, B.F.L. Ward, Z. Wa̧s,
Phys. Rev. D 61, 113010 (2000)

8. U. Baur, S. Keller, D. Wackeroth, Phys. Rev. D 59, 013002
(1998)

9. W.J. Marciano, A. Sirlin, Phys. Rev. D 8, 3612 (1973)
10. J. Fleischer, F. Jegerlehner, Z. Phys. C 26, 629 (1985)
11. D. Bardin, S. Riemann, T. Riemann, Z. Phys. C 32, 121

(1986)
12. A. Denner, T. Sack, Z. Phys. C 46, 653 (1990)
13. W. Beenakker, F.A. Berends, A.P. Chapovsky, Nucl. Phys.

B 548, 3 (1999), hep-ph/9811481
14. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl.

Phys. B 587, 67 (2000), hep-ph/0006307
15. D. Wackeroth, W. Hollik, Phys. Rev. D 55, 6788 (1997)
16. V.A. Zykunov, Lowest-order electroweak radiative correc-

tions to the single W production in polarized hadron
hadron collisions, High energy physics and quantum field
theory, Tver (2000), p. 399, hep-ph/0107059
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